
01
Input

An advanced input system, easy to use, without any
package dependency. Handles keyboard, mouse,
gamepad and touch inputs. Any ingame action can
be bound to a set of buttons/axes. 02

Audio
A series of utilities built on top of Unity’s native
AudioMixer system. Among these, Soundbank assets
let you create and manage a variety of sound
effects for your game.

05
UI

All the most common components of a game’s UI
are available as highly customizable prefabs with
all kinds of behaviours: panels, buttons, selectors,
tab system, page system...

09
Contexts

Using a simple visual editor, you can dictate which
game actions are locked or unlocked during
different parts of the game, such as exploration,
combat, menu or dialogues.

06
Cursor

The main cursor (usually the player’s mouse) can be
fully customized, and also provides a seamless
compatibility with joysticks or virtual sticks in
addition to regular mouse movements.

10
Save

Arsenal includes a full save system that can be
customized at will. Game data is serialized in a JSON
file, but savefiles are also readable and editable in
the form of a ScriptableObject.

03
Tweens

The Tweener components give you total control over
how any value can be animated. Custom Tweeners
and Gauges can also be created, thanks to an easily
expandable API.

07
LocalizATION

Store your game’s texts in a CSV or TSV file, using
the spreadsheet template included with the
package, and Arsenal will handle the rest. Dynamic
strings are also supported.

11
Settings

As the sample use case for the save system, a
complete functional “Settings” panel is available in
the package. It gives control over fullscreen mode,
resolution, language and audio volume.

04
Themes

Reskinning your whole UI is now instantaneous: you
can bind any element or group to a Theme asset,
which is easy to edit and contains all relevant data
for your content’s appearance.

08
Dialogues

The package comes with a complete dialogue
system built on top of the localization system. This
includes branching, choices, events, speed
manipulation and skipping dialogues.

12
And more!

The list isn’t even complete! Also, the package comes
with an extensive documentation (user manual +
scripting API reference), and support is available
through the Discord community.

Finally, a framework for all non-gameplay aspects

of your game production!

Step 1: create the Arsenal Manager in your scene.

Step 2: make your game!

Step 1
In your Project folder, create a KeyBinding asset.

Step 4
You’re all set!

Step 2
In this asset,

declare your

Buttons and Axes.

Drag the KeyBinding asset to the Input Manager.
Step 3

Input

Input (touch)

Using touch input? Play with the Virtual Stick prefab! Your KeyBinding assets also accept Virtual Sticks.

Results are immediate and customizable.

Audio
Create your SFX in Soundbank assets... Manage your sounds from a one-line call:

...then give variations to any clip or value!

Tweens
One component per Tween, fully configurable

A single Launch() call performs the Tween

Perform Tweens on a large number of values!

Gauges
A Gauge can access several UnityEvents for flexibility.Any element can implement a Gauge logic:

Themes

Lots of parameters available!

Play with logic operators:

“and, or, xor, not”

Binding to an object (or group!)

is done with a single component.

Easily enable/disable states at runtime,

either via code or event:

All UI styles and behaviours, in one single Theme asset.

UI Presets

A simple panel with a CanvasFader,
that can FadeIn() or FadeOut().

Panel:

A layout of buttons. Can accept
navigation in four directions.

Can follow cursor, and/or position
itself dynamically.

A button with a fully,
quickly customizable

behaviour.

Highly reliant

on UnityEvents.

Smart Button:

Spatial Selector:

Tooltip:

Localization
Give this file to the

LocalizationManager.

Protip: Chunks split your work into smaller files!

Copy the Google Sheet template (),

fill it and export it as a TSV file.

click here Give a Localizer Component

to any element carrying text.

You can process dynamic text
with the UnityEvent.

Change language in a single method call:

https://docs.google.com/spreadsheets/d/1EGBCtSRsDbyf4x1Lz84zAIwOTNXeLCXJ3IImUkOLWf0/edit#gid=0

Dialogues
Work with localized TSV files: template here For starting a dialogue,

use the DialogueLauncher
component.

Dialogues can contain
events, and you control

when/how to play them.

Dialogues are shown

in a full, preconfigured,

highly customizable

canvas.

Includes player choice UI,

for dialogue branching.

SpeakerDatabase:

This asset handles

names and portraits. 

Supports any format

for portrait displaying,

including animations.

https://docs.google.com/spreadsheets/d/1DAII4I2FJ1bmrlIVR6kwv6c2fEk5yi0cKAmaH98dP2I/edit#gid=0

Contexts

A Feature is
“locked” if at least
one active Context
prohibits its use.

The Lock Matrix centralizes this logic, thus
making transitions easier.

At any moment in
your game, any

number of Game
Contexts can be

active at once.

This is the Context Manager.

Save System
Split saved data

into “channels”,

for an easier

management.

Save/load the game,

with simple one-liners.

Also works across

multiple save slots.

Your save files exist

not only as JSON files,

but also as editable assets!

